> Linear Algebra
> [KOMS120301]- 2023/2024

6.2 - Inverses and its relation to the Gaussian method, Gauss-Jordan method, and linear system

Dewi Sintiari

Computer Science Study Program
Universitas Pendidikan Ganesha
Week 6 (October 2023)

Learning objectives

After this lecture, you should be able to:

1. find inverse by Gaussian elimination algorithm;
2. find inverse by Gauss-Jordan elimination algorithm;
3. explain the method to find solution of linear system using inverse;
4. finding solution of a linear system using inverse;
5. solving homogeneous system (when the constant vector is a zero vector).

Part 1: Algorithms to find an inverse

Algorithm

- Computing inverse by Gaussian elimination

Given an invertible square matrix A. To compute A^{-1}, we perform the following computation:

$$
[A \mid I] \xrightarrow{\text { G-J elimination }}\left[I \mid A^{-1}\right]
$$

- Computing inverse by Gauss-Jordan elimination Given an invertible square matrix A. To compute A^{-1}, we perform the following computation:

$$
[A \mid I] \xrightarrow{\text { Gaussian elimination }}\left[I \mid A^{-1}\right]
$$

Example 1

Find the inverse of: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$

Example 1

Find the inverse of: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$

Solution:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 5 & 3 & 0 & 1 & 0 \\
1 & 0 & 8 & 0 & 0 & 1
\end{array}\right] \underset{R 3-R 1}{R 2-2 R 1}\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & -2 & 5 & -1 & 0 & 1
\end{array}\right] \underset{\sim}{R 3+2 R 2} \underset{\sim}{\sim}} \\
& {\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & 0 & -1 & -5 & 2 & 1
\end{array}\right] \stackrel{R 3 /(-1)}{\sim}\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3- & -2 & 1 & 0 \\
0 & 0 & 1 & 5 & -2 & -1
\end{array}\right] \underset{\sim}{R 1-2 R 2} \underset{\sim}{\sim}} \\
& {\left[\begin{array}{ccc|ccc}
1 & 0 & 9 & 5 & -2 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & 0 & 1 & 5 & -2 & -1
\end{array}\right] \stackrel{R 1-2 R 2}{\sim}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -40 & 16 & 9 \\
0 & 1 & 0 & 13 & -5 & -3 \\
0 & 0 & 1 & 5 & -2 & -1
\end{array}\right]=\left[I \mid A^{-1}\right]}
\end{aligned}
$$

Example 1 (cont.)

Hence, $A^{-1}=\left[\begin{array}{ccc}-40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1\end{array}\right]$
It can be checked that:

$$
A A^{-1}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 3 \\
1 & 0 & 8
\end{array}\right]\left[\begin{array}{ccc}
-40 & 16 & 9 \\
13 & -5 & -3 \\
5 & -2 & -1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Example 2

Apply G-J method to find the inverse of: $A=\left[\begin{array}{ccc}1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5\end{array}\right]$
Solution:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & 6 & 4 & 1 & 0 & 0 \\
2 & 4 & -1 & 0 & 1 & 0 \\
-1 & 2 & 5 & 0 & 0 & 1
\end{array}\right] \underset{R 2+R 1}{R 2-2 R 1}\left[\begin{array}{ccc|ccc}
1 & 6 & 4 & 1 & 0 & 0 \\
0 & -8 & -9 & -2 & 1 & 0 \\
0 & 8 & 9 & 1 & 0 & 1
\end{array}\right] \underset{\sim}{R 2 /(-8)} \sim} \\
& {\left[\begin{array}{ccc|ccc}
1 & 6 & 4 & 1 & 0 & 0 \\
0 & 1 & 9 / 8 & 2 / 8 & -1 / 8 & 0 \\
0 & 8 & 9 & 1 & 0 & 1
\end{array}\right] \stackrel{R 3-8 R 2}{\sim}\left[\begin{array}{ccc|ccc}
1 & 6 & 4 & 1 & 0 & 0 \\
0 & 1 & 9 / 8 & 2 / 8 & -1 / 8 & 0 \\
0 & 0 & 0 & -1 & 1 & 1
\end{array}\right] \sim \sim}
\end{aligned}
$$

The reduced form contains a zero row (hence, there is no way to create an identity matrix on the left block).

This means that A has no inverse.

Example 2 (cont.)

It can be checked that A has zero determinant.

$$
\begin{aligned}
\operatorname{det}(A) & =\left|\begin{array}{ccc}
1 & 6 & 4 \\
2 & 4 & -1 \\
-1 & 2 & 5
\end{array}\right| \\
& =1(4)(5)+6(-1)(-1)+4(2)(2)-4(4)(-1)-(-1)(1)(2)-5(6)(2) \\
& =20+6+16+16+2-60 \\
& =0
\end{aligned}
$$

Exercise

If exist, determine the inverses of the following matrices!

$$
\left.\left.\begin{array}{lll}
\bullet & {\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]} & \bullet\left[\begin{array}{ccc}
-1 & 0 & 1
\end{array}\right) \\
2 & 3 & -2 \\
6 \\
0 & -1 & 2 \\
0 \\
0 & 0 & 1
\end{array}\right] 5\right]
$$

Exercise

Solve the following linear system using Gauss-Jordan elimination:

- $\left\{\begin{aligned} a-b+2 c-d & =-1 \\ 2 a+b-2 c-2 d & =-2 \\ -a+2 b-4 c+d & =1 \\ 3 a-3 d & =-3\end{aligned}\right.$
$\cdot\left[\begin{array}{cccccc}0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -10 & 6 & 12 & 28 \\ 2 & 4 & -5 & 6 & -5 & -1\end{array}\right]$

Part 3: Relation to Linear System

Relation to linear system

Recall that the system:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

can be written as matrix operation: $A \mathbf{x}=\mathbf{b}$, where A is the coefficient matrix, \mathbf{x} is the variable vector, and \mathbf{b} is the constant matrix.

- If A is invertible, then the system has a unique solution;
- Otherwise, the solution is not unique.

Algorithm

Suppose we want to solve: $A \mathbf{x}=\mathbf{b}$, where $\operatorname{det}(A) \neq 0$.
Multiplying both sides with $A^{-} 1$ (from left), we obtain:

$$
\begin{aligned}
\left(A^{-1}\right) A \mathbf{x} & =\left(A^{-1}\right) \mathbf{x} \\
I \mathbf{x} & =A^{-1} \mathbf{b} \quad \text { since } A A^{-1}=I \\
\mathbf{x} & =A^{-1} \mathbf{b} \quad \text { since } / \mathbf{x}=\mathbf{x}
\end{aligned}
$$

Hence, the solution of the system $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=A^{-1} \mathbf{b}$.

Example: finding solution of linear system using inverse

 Given a linear system:$$
\left\{\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =5 \\
2 x_{1}+5 x_{2}+3 x_{3} & =3 \\
x_{1}+8 x_{3} & =1
\end{aligned}\right.
$$

Solution:

We have compute the inverse of: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$, that is,
$A=\left[\begin{array}{ccc}-40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1\end{array}\right]$. Hence, the solution is:

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{ccc}
-40 & 16 & 9 \\
13 & -5 & -3 \\
5 & -2 & -1
\end{array}\right]\left[\begin{array}{l}
5 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]
$$

You should be able to check that \mathbf{x} matches with the solution obtained using Gaussian or Gauss-Jordan elimination.

Homogeneous case

If the system is homogeneous (i.e., $\mathbf{b}=\mathbf{0}$), then the following hold:

- If A is invertible, then the system only has the trivial solution;
- If A is not invertible, then the system has non-trivial solution.

Example of homogeneous system

Show that the following homogeneous system only has the trivial solution!

$$
\left\{\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =0 \\
2 x_{1}+5 x_{2}+3 x_{3} & =0 \\
x_{1}+8 x_{3} & =0
\end{aligned}\right.
$$

Show that the following homogeneous system has a non-trivial solution!

$$
\left\{\begin{aligned}
x_{1}+6 x_{2}+4 x_{3} & =0 \\
2 x_{1}+4 x_{2}-x_{3} & =0 \\
-x_{1}+2 x_{2}+5 x_{3} & =0
\end{aligned}\right.
$$

Example of homogeneous system (cont.)

First example:
The homogeneous system has coefficient matrix: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$ and $\operatorname{det}(A) \neq 0$ with $A^{-1}=\left[\begin{array}{ccc}-40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1\end{array}\right]$

Second example:

The homogeneous system has coefficient matrix: $A=\left[\begin{array}{ccc}1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5\end{array}\right]$
It can be verified that $\operatorname{det}(A)=0$, so A^{-1} does not exist.
The system has a non-trivial solution, for instance:

$$
x_{1}=-29, x_{2}=8, x_{3}=-9
$$

Advantage of using inverse-method in solving linear system

Inverse-method is useful to solve linear system $A \mathbf{x}=\mathbf{b}$ with the same coefficient matrix A but with different constant vector \mathbf{b}.

For example:

$$
\left\{\begin{array} { r l }
{ x _ { 1 } + 2 x _ { 2 } + 3 x _ { 3 } } & { = 5 } \\
{ 2 x _ { 1 } + 5 x _ { 2 } + 3 x _ { 3 } } & { = 3 } \\
{ x _ { 1 } + 8 x _ { 3 } } & { = 1 }
\end{array} \quad \left\{\begin{array} { r l }
{ x _ { 1 } + 2 x _ { 2 } + 3 x _ { 3 } } & { = 1 0 } \\
{ 2 x _ { 1 } + 5 x _ { 2 } + 3 x _ { 3 } } & { = 0 } \\
{ x _ { 1 } + 8 x _ { 3 } } & { = - 2 }
\end{array} \quad \left\{\begin{array}{rl}
x_{1}+2 x_{2}+3 x_{3} & =-4 \\
2 x_{1}+5 x_{2}+3 x_{3} & =12 \\
x_{1} & +8 x_{3}
\end{array}=5\right.\right.\right.
$$

Can you explain why?

- Since $\mathbf{x}=A^{-1} \mathbf{b}$, then to solve those systems, it is enough to compute A^{-1} once, then multiply it with the corresponding vector \mathbf{b}.

Exercise 1

Solve the following system using inverse-method:

$$
\left\{\begin{array} { r l }
{ x _ { 1 } + 2 x _ { 2 } + 3 x _ { 3 } } & { = 5 } \\
{ 2 x _ { 1 } + 5 x _ { 2 } + 3 x _ { 3 } } & { = 3 } \\
{ x _ { 1 } + 8 x _ { 3 } } & { = 1 }
\end{array} \quad \left\{\begin{array} { r l }
{ x _ { 1 } + 2 x _ { 2 } + 3 x _ { 3 } } & { = 1 0 } \\
{ 2 x _ { 1 } + 5 x _ { 2 } + 3 x _ { 3 } } & { = 0 } \\
{ x _ { 1 } + 8 x _ { 3 } } & { = - 2 }
\end{array} \quad \left\{\begin{array}{rl}
x_{1}+2 x_{2}+3 x_{3} & =-4 \\
2 x_{1}+5 x_{2}+3 x_{3} & =12 \\
x_{1} \\
+8 x_{3} & =5
\end{array}\right.\right.\right.
$$

Exercise 2

Solve the following linear system using inverse-method:

- $\left\{\begin{aligned} a-b+2 c-d & =-1 \\ 2 a+b-2 c-2 d & =-2 \\ -a+2 b-4 c+d & =1 \\ 3 a-3 d & =-3\end{aligned}\right.$
$\cdot\left[\begin{array}{cccccc}0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -10 & 6 & 12 & 28 \\ 2 & 4 & -5 & 6 & -5 & -1\end{array}\right]$

to be continued...

(C) Dewi Sintiari/CS Undiksha

